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Abstract

This paper explores the use of reinforcement learn-
ing (RL) models for autonomous racing. In contrast
to passenger cars, where safety is the top priority, a
racing car aims to minimize the lap-time. We frame
the problem as a reinforcement learning task with
a multidimensional input consisting of the vehicle
telemetry, and a continuous action space. To find
out which RL methods better solve the problem and
whether the obtained models generalize to driving
on unknown tracks, we put 10 variants of deep de-
terministic policy gradient (DDPG) to race in two
experiments: i) studying how RL methods learn to
drive a racing car and ii) studying how the learning
scenario influences the capability of the models to
generalize. Our studies show that models trained
with RL are not only able to drive faster than the
baseline open source handcrafted bots but also gen-
eralize to unknown tracks.

1 Introduction
Autonomous driving has received a lot of interest from the
media and research alike, due to its potential to change how
mobility and transport may look like in the future. However,
within the domain of autonomous driving, there are different
scenarios which dictate the objective for which to optimize.
The focus of our research is to provide autonomous driving
for racing cars in order to assist professional drivers to im-
prove their racing line. In this case, the ultimate goal of our
driver model is to drive the car around a racing track so as
to achieve the lowest possible lap-time, preferably by reach-
ing the physical limits of the car. In common practice, this
problem is addressed by applying methods from the field of
control theory. These methods utilize heuristics and demand
domain knowledge to tune the model’s parameters [Segers,
2014] manually. As each racing track has its peculiar chal-
lenges, these methods often require a different set of heuris-
tics and parameters for each new situation.

Reinforcement learning aims at training an agent to learn
to interact with an environment such as to maximize some
notion of long-term reward. Combining RL with deep learn-
ing, problems with high-dimensional state spaces can be
solved [Mnih et al., 2013; 2015]. With algorithms like deep

deterministic policy gradient (DDPG), deep RL can be ex-
tended to allow for solving continuous action space optimiza-
tion problems [Lillicrap et al., 2015]. This is an essential pre-
requisite for our use case as the racing car expects inherently
continuous control (i.e. steering, brake, and throttle).

As regards autonomous driving, a lot of attention has been
devoted to image processing, to analyze information based on
images from cameras [Chen et al., 2015; Koutnı́k et al., 2013;
Drews et al., 2017; Jaritz et al., 2018]. In general, process-
ing video input takes significant time and resources in train-
ing phases: from rendering to learning from them. Instead,
a physics engine for racing simulation often runs headless
to produce telemetry data at high rates (1000Hz), and rac-
ing cars already have the infrastructure to capture and make
use of telemetry data which could be utilised for our purpose.
Thus, our goal in this paper is to investigate how well differ-
ent RL models can perform by using solely telemetry data
streams. Besides, images contain a wealth of information
which makes it difficult to extract the essentials needed to
drive a racing car to its physical limits. For instance, there
are many corners were the visibility is limited by obstacles.
That is why, human pilots need to learn the track by heart
before the race which helps them to decide how to manage
(enter or leave) corners. Similarly, our algorithms use a (par-
tially observable) racing line as reference for decision. It is
common knowledge that besides vision and knowledge of the
track, drivers heavily rely on the lateral and longitudinal ac-
celeration that they feel through the vestibular system as well
as the saturation of the tires by sensing the torque present in
the steering wheel [Bentley, 1998]. Such information is well
represented by the telemetry data of racing cars.

Given our goal of autonomous racing, this work is driven
by two research questions, with the first being (RQ1): is it
feasible to learn a driver model that effectively drives a rac-
ing car by relying only on telemetry data as input? More con-
cretely, which combination of algorithm/architecture is best
suited to solve this task?. Additionally, inspired by the com-
mon practice of human pilots, that train for the specific racing
track (prior to the race), even though they already are pro-
ficient at driving, we explore the second research question
(RQ2): how well such algorithms trained on one track are
able to generalize to other tracks?

In the spirit of the competition, our experimental design
is a tournament, where 10 variants of DDPG compete with
each other in two studies. In the first study, 10 algorithms are



trained to drive on a simple racing track. Algorithms produc-
ing the fastest models in terms of lap-time are promoted to a
second part, to compare learning to drive on difficult tracks.
In the second study the best models are tested on unknown
tracks to assess how the current state-of-the-art in deep RL
generalizes to unseen situations.

In our studies, RL models trained (from scratch) outper-
form the best performing open source bots available for our
simulation environment. As a result, the faster models deliver
a new racing line that leads to better performance. To the best
of our knowledge, we are the first to explore racing line op-
timization problem using RL, which the main contribution of
this work. Our further contributions to the modeling the au-
tonomous racing problem using RL methods include: a sim-
ple scheme that reduces the exploration space when two out-
puts should be mutually exclusive in continuous action spaces
and a modification of the target to solve an issue that arises
when sampling end-of-episode transitions. Additionally, we
propose using the look ahead curvature (LAC) which pro-
vides information regarding the upcoming shape of the track
recorded in a previous lap. We also benchmark the models
resulting from different algorithms on the trained and unseen
environments (racing tracks). Our research clearly shows that
these tests need to be considered in the racing domain.

2 Background
2.1 Autonomous Racing
Autonomous driving has matured into a field where reliable
models are needed for obstacle detection and avoidance, ma-
neuver initiation and recovery, while driving is reduced to
path planning and path following. These models require a
sophisticated perception of the environment, which is why
much autonomous driving research focuses on image pro-
cessing. The context of motorsports has its own require-
ments, that significantly influence the definition of the prob-
lem space. In contrast to passenger vehicles, where safety is
the top priority, the main objective of a racing vehicle is to
minimize the lap-time. One way to do this is to find, within
the boundaries of the track, the trajectory where the car can
move with the best lap-time–the optimal racing line. The op-
timal racing line is the best compromise between the short-
est path and the trajectory that allows to achieve the highest
speeds [Braghin et al., 2008]. It depends on several factors
including the track shape, the car aerodynamics, grip, etc.
[Cardamone et al., 2010]. Hence, the problem of trajectory
planning is a bounded optimization problem that requires to
take into account not only the geometry of the track but also
vehicle dynamics. Autonomous racing thus requires a per-
ception of the vehicle dynamics in relation with the environ-
ment. Typically, the optimal racing line is calculated offline
or is estimated by the reference of an expert human driver.

Attempts to achieve the lowest possible lap-times with au-
tonomous racing cars typically combine control theory, deter-
mining and utilizing the optimal racing line, and/or optimiz-
ing the driver model directly. [Cardamone et al., 2010] calcu-
lated the ideal racing line using a genetic algorithm and then
measured the lap-time of a line-follower bot. Their method
outperformed the previous state-of-the-art models by a small
margin while ours outperformed the state-of-the-art by a large

margin and without having the necessity of having a line fol-
lower bot and just a reference line (this is typically done in
professional racing scenarios, where a loose racing line ex-
ists that racers have as a reference). Another disadvantage
of their method, is that it is unable to generalize to different
tracks and limited to the performance of the bot. The racing
line needs to be re-calculated for every new track or new car.

The aim of [Koutnı́k et al., 2013] was to demonstrate that
a car can be autonomously driven by using images. Their
approach performed a prepossessing step in order to reduce
the state space by representing it in the frequency domain,
converting the images in a set of coefficients that are then
transformed into weight matrices via an inverse Fourier-type
transform. However, their approach targets driving in general
and not racing which would require to minimise the lap time.
In contrary, we aim to reduce the lap time which is the most
important factor in racing. [Ahmad El Sallab, 2017] tackle
the generalization issues in traditional imitation learning this
means that they need to have demonstrations in all tracks.
This demonstrations came from a traditional proportional-
integral-derivative controller (PID controller) with access to
the position of the ego car with respect to the left and right
lanes. All the previously mentioned papers try to follow the
center of the track, which makes it impossible to achieve the
optimal racing line. We are using as a loose hint a racing
line that we then improve by a large margin. [Koutnı́k et
al., 2013], [Jaritz et al., 2018] used discrete action space
while we are using continuous actions space. Our prelim-
inary studies (not included in this paper) showed that for a
one-dimensional action space (steering wheel), a discrete ac-
tions space algorithm such as DQN might learn a policy that
is able to drive on the track, but is far from reaching the
lap-times achieved by the continuous actions space algorithm
DDPG (limited to steering wheel control as well). In our
opinion,it is not possible to drive to the limits by discretizing
the throttle and steer. In comparison, human gamers of racing
games/sims consider a dedicated steering wheel a worthwhile
investment. In professional simulators, as the ones used to
train F1 pilots, it is a must. [Drews et al., 2017] present a
deep learning method to generate cost maps learned from hu-
man demonstrations. The cost map is then feed to a model
predictive control algorithm (MPC) that runs in real time on a
real 1:5 scale autonomous vehicle by sampling trajectories us-
ing a model of the dynamics of the car. The dynamics model
was learned directly from the data. Although, this work rep-
resents the state-of-the-art in the field of control theory and it
has several advantages it still needs labeled data that would
have to be recorded for each different track. It also has the
drawback that the driving performance is limited by the qual-
ity of the human demonstrations.

2.2 Motorsports
As above introduced, the optimal racing line depends on fac-
tors including the track shape, the car aerodynamics, the grip,
etc. [Cardamone et al., 2010]. It is often calculated offline or
estimated by the reference of an expert human driver.

Racing line. The racing line is defined as a sequence of
points on the track. Each point Pi of the racing line can be
represented by the pair 〈δi, αi〉. As depicted in Figure 1, αi is



Figure 1: Left: Geometrical representation of the radious of curva-
ture Right: Racing line representation [Cardamone et al., 2010]

the lateral distance of the point from one of the track borders
(e.g., from the right border), normalized by the track width
W , and δi the distance of the point from the track starting
line, computed along the track axis.

Figure 1 shows the curvature κ of the curve C at a given
point P in track is defined by the inverse of the curvature ra-
dius (r) at that point, and it’s given by κ = ∂θ

∂s where κ is
the curvature at a segment ∂s with a change of angle ∂θ1.
The smaller the curvature, the higher the speed that a car can
maintain along the racing line. The maximum possible speed
without loosing grip is given by vmax =

√
µρ(g + Fa/m)

where m is the car’s mass, µ is the tire-road friction coeffi-
cient, ρ is the curvature radius and Fa is the downforce. The
shortest path is the sequence of points in one lap that results
on the shortest distance, while the minimum curvature path is
the sequence of points that allows to complete one lap with
the minimum possible curvature. [Cardamone et al., 2010].

2.3 Reinforcement Learning
Reinforcement learning deals with the problem of learning
optimal behaviours for the interaction of an agent with an
environment by trial and error, such as to maximize the ac-
cumulated reward obtained from the environment. It is as-
sumed that the interaction of the agent with the environment
takes place in discrete time steps t. At each step, starting
from a state st, the agent executes an action at and receives
a reward rt and a new state st+1 from the environment. The
return from a state is defined as the sum of discounted fu-
ture reward, Rt =

∑T
i=t γ

(i−t)ri, where γ ∈ (0, 1] is a dis-
count factor and T is a terminal time step after which the
process restarts. The objective of RL is to learn a policy π,
mapping states to actions, that maximizes the return from the
start distribution. There are two main approaches for solving
RL problems: methods based on value functions and policy
search. So called actor-critic approaches employ both value
functions and policy search. A policy π defines the agent’s
behavior by mapping states to actions. A value function pro-
vides an estimation of the future return and thus can be used to
evaluate how good an action or state is. An action value func-
tion Qπ(at, st) = Eπ[Rt|st, at] estimates the return starting
from state st, taking action at, and then following policy π.

In deep RL the algorithm components are implemented
as deep neural networks. The first successful deep RL al-
gorithm was deep Q-network (DQN)[Mnih et al., 2013],
which succeeded at solving problems with high-dimensional
state spaces (e.g. pixels), but can only handle discrete, low-
dimensional action spaces (e.g. left, right). Driving a car re-
quires continuous actions (steering, throttle). The algorithms

1https://en.wikipedia.org/wiki/Curvature

thereto are topic of the next section.

3 Algorithms
3.1 Deep Deterministic Policy Gradient (DDPG)
By combining the insights of DQN with the actor-critic de-
terministic policy gradient algorithm, DDPG [Lillicrap et al.,
2015] allows for solving a wide variety of continuous con-
trol tasks. DDPG utilizes an actor function µ(s|θµ), specify-
ing the current policy, and a critic function Q(s, a|θQ), both
approximated by neural networks. At each step, based on
the current state st, the agent chooses an action according to
at = µ(st|θµ) +N , with a noise process N to allow for ex-
ploration, and obtains a reward rt and a new state st+1 from
the environment. The observed transitions (st, at, rt, st+1)
are stored in a replay buffer. At each step, a minibatch of
N transitions is uniformly sampled from the buffer. The pa-
rameters of the critic network are then optimized using Adam
optimization to minimize the loss given as:

L(θQ) =
1

N

N∑
i=1

(yi −Q(si, ai|θQ))2 (1)

yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ

′
) (2)

where yi is the one-step target with the discount factor γ.
Here,Q′(s, a|θQ′

) and µ′(s|θµ′
) are the target networks asso-

ciated withQ(s, a|θQ) and µ(s|θµ). Their parameters are up-
dated at each step using soft updates, i.e. θ′ ← τθ+(1−τ)θ′
with τ � 1. To update the parameters of the actor network, a
step proportional to the sampled gradient of the critic network
with respect to the action is taken, which is given by:

∇θµJ ≈
1

N

N∑
i=1

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θ
µ)|s=si .

(3)
[Lillicrap et al., 2015] evaluated DDPG on a car racing prob-
lem. They reported that, for both using low-dimensional data
and using pixels as input, some replicas learned reasonable
policies, while others did not. An open source implementa-
tion of DDPG 2 replicates those results to learn steering, or
break. Instead, we introduce numerous modifications to the
algorithm that make it possible to learn reasonable policies
for racing and outperforming well-known baselines.

Window sampling. In partially observable environments,
accessing a single state does not reveal the full underlying
state of the environment at each time step. Window sampling
provides the agent additional information by feeding a win-
dow of the last w states to the actor and the critic network.

Long short term memory. Another natural approach to
include knowledge from past experiences is to make use of
recurrent neural networks, which are able to remember infor-
mation for an arbitrary number of time steps [Hochreiter and
Schmidhuber, 1997]. For example, LSTM units can be added
to the actor and the critic network.

Multi-step targets. For updating the critic function, a
one-step target is used in standard DDPG. Multi-step targets
[Mnih et al., 2016; Vecerik et al., 2017] incorporate the next

2https://yanpanlau.github.io/2016/10/11/Torcs-Keras.html



n rewards obtained along the trajectory starting from state st
and following a policy close to the current policy µ(s|θµ) at
time step t. The one-step target yi (in Eq. 2) is replaced by:

y
(n)
i =

n−1∑
k=0

γkri+k + γnQ′(si+n, µ
′(si+n|θµ

′
)|θQ

′
) (4)

Prioritized experience replay. In standard DDPG, transi-
tions are sampled uniformly from the replay buffer at each
step. Prioritized experience replay (PER) [Schaul et al.,
2015] attempts to make learning more efficient by sampling
more frequently transitions that are more important for learn-
ing. The probability of sampling a particular transition i

from the replay buffer is given by P (i) =
pαi∑
k p

α
k

, where
pi is the transition’s priority. The sum in the denomina-
tor runs over all transitions in the buffer. Similar to the
implementation outlined in [Vecerik et al., 2017], we use
pi = δ2i +λ3|∇aQ(si, ai|θQ)|2+ ε. Here, δi is the temporal-
difference error calculated for the transition when it was sam-
pled the last time, the second term represents the transition’s
contribution to the actor loss, λ3 is used to weight the two
contributions, and ε is a small positive constant ensuring all
transitions are sampled with some probability.

3.2 Extensions of RL Algorithms
To ensure that DDPG variants work on racing tracks, we in-
troduced: a method to reduce the exploration of continuous
action spaces with two mutually exclusive outputs, a modifi-
cation of the training objective for episode terminations, and
a variation of the critic network.

Brake exploration The most important actions to control
a racing car are steering, accelerating, and braking. Learning
how to steer is rather straightforward, but the complex inter-
play between brake and throttle is very challenging from the
exploration perspective. Following [Lillicrap et al., 2015],
we use an Ornstein-Uhlenbeck (OU) process [Uhlenbeck and
Ornstein, 1930], which outputs temporally correlated values
centered around a given mean, for noise generation. This al-
lows for temporally correlated exploration. The values gen-
erated by the OU process are attenuated proportional to a pa-
rameter ε′, where ε′ is set to 1.0 in the beginning and is an-
nealed to zero at the end of exploration phase. We add noise
to three action dimensions independently, but with a probabil-
ity of 0.1. We stochastically add a stronger noise to the brake
while simultaneously lowering throttle by a factor of (1− ε′).
This guides the exploration to not press the throttle and brake
simultaneously, reducing the exploration space drastically.

Episode termination Episodes are terminated when a cer-
tain number of steps is reached, the car is out of track, moves
backwards, or its progress along its longitudinal axis is slow.
In all these cases except for the last, the agent receives a re-
ward of −1 at termination. In all cases, the target (Equation
2) for the end-of-episode transition is replaced by yi = ri.
The problem with this approach is that when terminating an
episode due to reaching the maximum number of steps, the
target function would also be yi = ri for this end-of-episode
transition, despite it being a good episode termination. In-
stead, to prevent an unintended adaption of the weights, in
this case we use the same target (Equation 2) as for non-

terminal transitions.

yi =

ri
premature end of
episode

ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ′

)
i = max steps
or normal step

LSTM critic network Initially, we added LSTM units to
both the actor and the critic network, but this lead to an un-
stable behavior of the actor. Thus, following the DQN ap-
proach for discrete action spaces in [Hausknecht and Stone,
2015], we kept the LSTM only in the critic. This is expected
to improve the performance of the algorithm, as a good ap-
proximation of the Q value function is the basis for learning
a good policy. The LSTM layer is placed after the concatena-
tion of the state and the action stream. The input to the critic
is a window of the last w states and actions.

4 Experiments
We evaluate the different algorithms on the open-source sim-
ulator TORCS (The Open Racing Car Simulator) [Wymann
et al., 2014]. TORCS is used for research in RL and au-
tonomous driving, utilizing either images or low-dimensional
features as input, e.g. [Lillicrap et al., 2015]. At each time
step, the agent receives detailed information about the state
of the environment. However, as many parts of the simula-
tion are not directly accessible to the agent, the environment
is partially observable even if only a single car is on the track.
The interaction with the environment takes place in discrete
time steps with a spacing of 200 ms. The input to the algo-
rithms consists of vehicle telemetry data. We carefully se-
lected the features in Table 1. The reward is calculated as:

r = Vx(cos(θ)− sin(θ)− |distance to track axis|) (5)

where θ is the angle between the car direction and racing line.
We compare three approaches: i) the middle line of the

track is considered to be the track axis, which is unlikely to
lead to an optimal driving behavior, as the middle of the track
is not the optimal racing line. ii) a racing line from the Tita
bot. The algorithm optimizes its path taking the racing line as
a loose reference which then it improves by generating a new.
This reduces the exploration space significantly. iii) same as
ii) but adding the LAC to the input state st.

Damage is a quantity calculated by TORCS each time the
car hits a wall and is proportional with the impact of the hit on
the car. We consider the negative of the damage magnitude in
the reward function and we report the damage of a model as
the cumulative sum over the entire testing phase.

The experiments use three tracks considered by [Carda-
mone et al., 2010] with increasing complexity (see Table 1).
The Michigan Speedway is a semi-oval track that can be
driven without using the brake. Forza and Aalborg are far
more complex and cannot be driven without braking. Espe-
cially Aalborg is rather technical, with sharp turns that have
to be taken at lower speed as well as fast segments.

4.1 Algorithms
We considered four algorithms: DDPG, LSTM, MS and PER
and each of them was tested with 2 − 3 variation of hyper-
paramaters. We used four variations of DDPG: WIN1, WIN4,
WIN8 use window sampling with window sizes 1, 4, and 8



Notation Description
θ Angle between the car direction and the direction of the track axis or racing line.
track Vector of 19 range finder sensors: each sensor returns the distance between the track

edge and the car within a range of 200 m.
trackPos Distance between the car and the track axis or racing line.
Vx Speed of the car along its longitudinal axis.
Vy Speed of the car along its transverse axis.
Vz Speed of the car along its z-axis.
~ω Vector of 4 sensors representing the rotation speed of the wheels.
frot Number of rotations per minute of the car engine.
LAC Look ahead curvature. Vector of 4 curvature measurements from the racing line at 20,

40, 60 and 80 meters ahead. The curvature is recorded from a previous slow lap.

Table 1: Left: Telemetry features used as input [Loiacono et al., 2013]. Right: Tracks used for evaluation [Wymann et al., 2014]: Michigan
(Top), Forza (Middle), Aalborg (Bottom). Note that LAC is not used in the 1st and 2nd part of Study 1.

(WIN1 is standard DDPG). LSTM4, LSTM8 utilize an LSTM
critic network with window sizes 4 and 8. MS2, MS3, MS4
uses multi-step targets with 2, 3, and 4 steps. PER40k, PER1M
utilize PER with buffer sizes 4× 104 and 106.

4.2 Study 1: Learning to Drive
This study addresses RQ1 by examining whether RL models
can drive a racing car from telemetry data and then compara-
tively evaluating the performance across different models.

Procedure. This study was split in three parts. To reduce
the training time for hyperparameter selection, part1 uses a
simple track, Michigan and trained for 500 episodes. The
learned model was tested without exploration (ε = 0) on the
same track the results were used to select the hyperparametrs
for each of the four used algorithms. In part2, the four algo-
rithms (with selected hyperparameters) and tested on a tech-
nically more complex track, Aalborg, using both MOT and
Tita bot as racing line references. With the selected best al-
gorithm of part2, in part3 we evaluated the impact of adding
future information of the track. We did so by adding the look
ahead curvature (LAC) and training in all three tracks. Part 2
and 3 were trained for 7000 episodes. The results were used
to select the best algorithm/model suited for the task of au-
tonomous racing.

Results. Lap time is the most important measure in rac-
ing and we will utilise it to compare the performance of dif-
ferent models. Table 2 shows best (bLT) and average (aLT)
lap-times in both Michigan and Aalborg as well as baseline
approaches: Tita (heuristic state-of-the-art bot) and Genetic
[Cardamone et al., 2010]. The results (aLT) of Michigan
track were used to select the best hyperparameters for each
algorithm. Thus in turn, WIN4, MS4, PER1M and LSTM4
were selected to be used for Aarlborg track. As shown in
Table 2, our models outperform the baseline bots by a large
margin (bLT: WIN1 26.75 vs Tita 28.57) on the simple track.
On the complex track, only models trained with racing line
(RC) are faster (LT: PER1M 67.17 vs Tita 68.11). The results
also show that PER1M trained with racing line achieves the
best lap-time and thus it is selected to compare the effect of
adding the LAC. Table 3 shows the results of adding the LAC
to the state (PER1M). This addition gives the best result.

4.3 Study 2: Driving in New Scenarios
Study 2 on driving in new scenarios addresses RQ2 and in-
vestigates how the driver models perform in unseen tracks.

Part I: Michigan Part II: Aarlborg
MOT Reference RC Reference

bLT aLT bLT aLT bLT aLT
WIN1 26.75 27.16 - - - -
WIN4 26.77 26.96 74.75 75.73 67.56 69.89
WIN8 26.75 35.61 - - - -
MS2 26.79 30.33 - - - -
MS3 26.80 27.13 - - - -
MS4 26.83 27.04 77.68 78.53 69.94 77.01
PER40k 26.84 34.85 - - - -
PER1M 27.06 32.30 71.76 75.22 67.17 70.11
LSTM4 27.35 27.52 85.87 90.05 - -
LSTM8 27.50 27.85 - - - -
Tita 28.57 - - - 68.11 -
Genetic 33.86 - - - 69.92 -

Table 2: Testing results over 10 runs in Michigan and over 5 runs
in Aalborg. Best lap-time (bLT), average best lap-time (aLT)
(in seconds) for models with 0 damage. The Aalborg track was
trained/tested using both middle of the line (MOT) and racing line
from Tita (RC) bot as racing line references.

Procedure. For this study, we use different variants of
PER1M (MOT, RC, RC+LAC) as shown in Table 4. The
models are trained in one track (Michigan or Aalborg) and
tested in two other unseen tracks. While training, as the
model improves, a test is performed in the other two un-
seen tracks. We choose as final model, referred to as gen-
eral model, the one that performs with the best lap time in the
training track but that is also able to finish the unseen tracks.

Results. First, the models trained in Michigan did not fin-
ish the unseen tracks (Aalborg and Forza). We attribute this
to the simplicity of the Michigan track (no sharp corners)
offering little exposure to complex manoeuvres and leading
quickly to overfitting. Table 4 shows the results of the gen-
eral models trained in Aalborg and tested in unseen tracks.
These models were able to drive in unseen tracks. As ex-
pected, their performance in unseen tracks compared to the
performance of models trained and tested in the same track
(see Table 3) is significantly worse. Figure 2 illustrates lap-
times achieved on each track for all PER1M models learned
on Aalborg. The vertical red line indicates the general model.
With more training, the performance improvements in Forza
(test) are consistent with those in Aalborg (training), i.e., the
more the model trained in Aalborg, the better it performed
in Forza. But, these improvements were not reflected in the
Michigan track, which we think is due to the very basic shape
of the Michigan track (no steep curves).



Forza Michigan Aalborg
Tita 77.39 28.57 68.11
PER1M MOT - 27.060 71.758
PER1M RC Reference 75.306 26.906 67.27
PER1M RC Reference + LAC 73.018 26.278 63.35

Table 3: Lap times (best) of a comparison between the best models
of the considered different approaches in Study 1. Tita vs PER1M
with the reward function set to follow the middle of the track (MOT)
vs bot racing line vs bot racing line + look ahead curvature (LAC).

Best General
bLT aLT Aalborg Michigan Forza

PER1M MOT 71.76 75.22 74.84 34.65 103.09
PER1M RC Ref. 67.17 70.11 71.26 33.67 108.69

PER1M RC Ref. + LAC 63.35 65.14 70.616 34.07 107.15

Table 4: Fastest models trained on Aalborg compared with general
models that complete all tracks (Testing). DNF: no model finished.

5 Impact of the Contributions
5.1 Brake Exploration
Figure 3 depicts the outputs of a model trained with the brake
exploration scheme proposed in Section 3.2. Using this ex-
ploration scheme, the model is able to press the throttle while
completely releasing the brake and vice versa. This shows
that the approach is capable of reducing the exploration space.
We also observe that after braking and releasing the pedal, the
model waits for some time until it starts steering. This is a
common practice among professional racing drivers to avoid
over-steering. The algorithm learned this behaviour by itself.

Figure 2: Fastest laps for all PER1M models trained on Aalborg and
tested on Aalborg (Blue), Michigan (Brown), and Forza (Green).

5.2 Episode Termination
We compared two different settings for good episode termina-
tions (terminations caused by reaching the maximum number
of steps). First, we set the target to yi = ri for the corre-
sponding end-of-episode transitions (variant 1). Second, we
set the target to yi = ri + γQ′(si+1, µ

′(si+1|θµ
′
)|θQ′

) as
for non-terminal transitions (variant 2) and we refer to it as
adopted target (AT). Figure 4 shows the training performance
in terms of average episode reward for the WIN1 algorithm
for both variants when learning to control steering and pedal
on the Michigan track. It can be seen that a higher maximum
is reached for variant 2. This small modification is essential,
especially when episodes are terminated after only a few steps
as is done when training to optimize single corners.

6 Discussion and Outlook
We presented a comprehensive study applying RL meth-
ods to self-driving racing cars relying only on car telemetry
data. Our goal was to investigate the capabilities of RL to

Figure 3: Outputs (steer, acceleration, brake) of a model trained with
brake exploration and speed along the car’s longitudinal axis.

Figure 4: Training episode reward for normal end-of-episode (green)
and AT (red) transitions. The reward is averaged over 10 training
runs with different random seeds, smoothed with a moving average
over 5 episodes.WIN1 with episode terminations caused by reaching
the maximum number of steps

drive from telemetry data, because simulated environments
can produce telemetry data at high rates, which makes the
use case practical. Besides, the telemetry data describes the
physics vehicle dynamics, which is important since we in-
tended to drive the car at its physical limits.

The results of Study 1 supports RQ1: Deep RL algorithms
effectively learn to drive fast from telemetry data and obtain
models better than state-of-the-art handcrafted models. The
results also showed that PER1M (prioritized experience re-
play with a replay buffer size of 1M samples) was the best
performing algorithm in a complex track. Most importantly,
the results evidenced that our proposed look ahead of the
curve approach (LAC) improves the performance of models
in the self racing scenarios. To the best of our knowledge,
these results constitute a contribution to the line optimization
problem using reinforcement learning, and our self-thought
models outperform the baseline open-source bots. Our find-
ings also show that the resulting models are able to work with
any racing line, making them suitable for street cars where
the problem is typically to follow a given trajectory. Note
that contrary to bots, our solution does not blindly follow a
given racing line, instead, it takes it as loose guide and then it
improves it to generate a new optimal racing line.

Second, we studied how the learned models perform on
unseen tracks. In Study 2, we trained models on a simple
and difficult track and compared their ability to drive on un-
known tracks. The results show that models trained in rea-
sonably complex tracks (Aalborg) can generalise relatively
well in unseen (untrained) simple (Michigan) or more com-
plex tracks (Forza). However, such models underperformed
in terms of lap time compared with models trained and tested
on the same track. It is interesting that such performance be-



haviour resembles the behaviour of professional human pilot
drivers. Even though they are experts in driving and have ac-
quired a lot of driving skills over the years, expert drivers still
practice a lot for the competing track before the competition.
This way they can memorise the landmarks and car dynamics
before achieving their full performance.

Similar to human pilots, models trained in Aalborg in
Study 2, did acquire driving skills, but in order to achieve the
best performance, they would need to continue training for
each specific track. Also, similar to human pilots that learn
the track by heart, when assisting the model with the infor-
mation about the curvature using our proposed look ahead of
curve (LAC) method, the performance of the model improves.

Thus, in the future work, we will put more effort and fur-
ther investigate means of generating such a general model
which would achieve relatively high performance in unseen
tracks and see how further training it for specific tracks, will
affect the performance. This would improve training time.
One way to make such general models robust and learn faster
would be to use pre-defined maneuvers to train the model.
Additionally, we plan to investigate whether we could train
models without using any reference line during the training.
In this work, we utilised TORCS as a simulation environ-
ment which was sufficient to evaluate our hypotheses and to
demonstrate the capabilities of our approach, while still being
fast to train/test and iterate. Yet, professional telemetry sys-
tems provide in real-time a wealth of information otherwise
inaccessible, such as engine temperature variations, damper
displacement, tire saturation. In future work, we intend to
move towards golden industry standards in simulated envi-
ronments and make use of more sophisticated telemetry in-
formation. Finally, we intend to investigate the interactions
with using images as a baseline for comparison but more im-
portantly as complementary channels.
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