
Count-Based Exploration in Feature Space for
Reinforcement Learning?

Jarryd Martin, Suraj Narayanan S., Tom Everitt, Marcus Hutter

Research School of Computer Science, Australian National University, Canberra
jarrydmartinx@gmail.com,surajx@gmail.com,tom.everitt@anu.edu.au,

marcus.hutter@anu.edu.au

Abstract. We summarise recent work on a new count-based optimistic
exploration algorithm for reinforcement learning (RL) that is feasible
in environments with high-dimensional state-action spaces. The success
of RL algorithms in these domains depends on generalisation from lim-
ited training experience. Function approximation techniques enable RL
agents to generalise in order to estimate the value of unvisited states,
but at present few methods enable generalisation regarding uncertainty.
We present a new method for computing a generalised state visit-count,
which allows the agent to estimate the uncertainty associated with any
state. Our φ-pseudocount achieves generalisation by exploiting the same
feature representation of the state space that is used for value func-
tion approximation. States that have less frequently observed features
are deemed more uncertain. The φ-Exploration-Bonus algorithm rewards
the agent for exploring in feature space rather than in the untransformed
state space. The method is simpler and less computationally expensive
than some previous proposals, and achieves near state-of-the-art results
on high-dimensional RL benchmarks.

1 Introduction

Reinforcement learning (RL) methods have recently enjoyed widely publicised
success in domains that once seemed far beyond their reach [8]. Much of this
progress is due to the application of modern function approximation techniques
to the problem of policy evaluation for Markov Decision Processes (MDPs) [14].
These techniques address a key shortcoming of tabular MDP solution methods:
their inability to generalise what is learnt from one context to another. This sort
of generalisation is crucial if the state-action space of the MDP is large, because
the agent typically only visits a small subset of that space during training.

Comparatively little progress has been made on the problem of efficient ex-
ploration in large domains. Even algorithms that use sophisticated nonlinear
methods for policy evaluation tend to use very old, inefficient exploration tech-
niques, such as the ε-greedy strategy [4, 7, 9]. There are more efficient tabular
count-based exploration algorithms for finite MDPs, which drive the agent to re-
duce its uncertainty by visiting states that have low visit-counts [13]. However,

? This work was supported in part by ARC DP150104590.



these algorithms are often ineffective in MDPs with high-dimensional state-
action spaces, because most states are never visited during training, and the
visit-count remains at zero nearly everywhere.

Count-based exploration algorithms have only very recently been success-
fully adapted for these large problems [2, 15]. The breakthrough has been the
development of generalised state visit-counts, which are larger for states that are
more similar to visited states, and which can be nonzero for unvisited states.
The key challenge is to compute an appropriate similarity measure in an effi-
cient way, such that these exploration methods can be combined with scalable
RL algorithms. It soon becomes infeasible, for example, to do so by storing the
entire history of visited states and comparing each new state to those in the
history. The most promising proposals instead compute generalised counts from
a compressed representation of the history of visited states.

This paper presents a new count-based exploration algorithm that is feasible
in environments with large state-action spaces. It can be combined with any
value-based RL algorithm that uses linear function approximation (LFA). Our
principal contribution is a new method for computing generalised visit-counts.
We construct a visit-density model in order to measure the similarity between
states. To do so, we exploit the feature map that is used for value function ap-
proximation, and construct a density model over the transformed feature space.
This model assigns higher probability to state feature vectors that share features
with visited states. Generalised visit-counts are then computed from these prob-
abilities; states with frequently observed features are assigned higher counts.
These counts serve as a measure of the uncertainty associated with a state. Ex-
ploration bonuses are then computed from these counts in order to encourage
the agent to visit regions of the state-space with less familiar features.

Our density model can be trivially derived from any feature map used for
LFA, regardless of the application domain, and requires little or no additional
design. In contrast to existing algorithms, there is no need to perform a special
dimensionality reduction of the state space in order to compute our generalised
visit-counts. Our method uses the same lower-dimensional feature representa-
tion to estimate value and to estimate uncertainty. This makes it simpler to im-
plement and less computationally expensive than some existing proposals. Our
evaluation demonstrates that this simple approach achieves near state-of-the-art
performance on high-dimensional RL benchmarks.

2 Technical Background

The reinforcement learning (RL) problem is usually formulated as an MDP
〈S,A,P,R, γ〉, where S is the set of states of the environment, A is the set
of available actions, P : (S ×A)× S → [0, 1] is the state transition distribution,
R : (S × A) × S → R is the reward function, and γ is the discount factor. The
agent is formally a policy π : S → A that maps a state to an action. At timestep t,
the agent is in a state st ∈ S, receives a reward rt, and takes an action at ∈ A. We
seek a policy π that maximises the expected sum of future rewards, or value. The



action-value Qπ(s, a) of a state-action pair (s, a) under a policy π is the expected
discounted sum of future rewards, given that the agent takes action a from state
s, and follows π thereafter: Qπ(s, a) = Eπ

[∑∞
k=0 γ

krt+k+1 | st = s, at = a
]
. RL

methods that compute a value function are called value-based methods. Tabular
methods store the value function as a table having one entry for each state(-
action). This representation of the state space does not have sufficient structure
to permit generalisation based on the similarity betweeen states. Function ap-
proximation methods achieve generalisation by approximating the value function
by a parameterised functional form. In LFA the approximate action-value func-
tion Q̂πt (s, a) = θ>t φ(s, a) is a linear combination of state-action features, where
φ : S × A → T ⊆ RM is an M -dimensional feature map and θt ∈ RM is a
parameter vector.

3 Method

Here we introduce the φ-Exploration Bonus (φ-EB) algorithm, which drives the
agent to visit states about which it is uncertain. Following other optimistic count-
based exploration algorithms [2, 10], we use a (generalised) state visit-count in
order to estimate the uncertainty associated with a state. A generalised count
is a novelty measure that quantifies how dissimilar a state is from those already
visited. Measuring novelty therefore involves choosing a similarity measure for
states. Of course, states can be similar in myriad ways, but not all of these
are relevant to solving the MDP. If the solution method used is value-based,
then states should only be considered similar if they share the features that are
determinative of value. This motivates us to construct a similarity measure that
exploits the feature representation that is used for value function approximation.
These features are explicitly designed to be relevant for estimating value. If
they were not, they would not permit a good approximation to the true value
function. This sets our method apart from the alternative approaches to deriving
a novelty measure presented in [2, 10, 15]. They measure novelty with respect to a
separate, exploration-specific representation of the state space, one that bears no
relation to the value function or the reward structure of the MDP. We argue that
measuring novelty in feature space is a simpler and more principled approach,
and hypothesise that more efficient exploration will result.

3.1 A Visit-Density over Feature Space

Our exploration method is designed for use with LFA, and measures novelty
with respect to a fixed feature representation of the state space. The challenge
is to measure novelty without computing the distance between each new feature
vector and those in the history. That approach becomes infeasible because the
cost of computing these distances grows with the size of the history.

Our method constructs a density model over feature space that assigns higher
probability to states that share more features with more frequently observed
states. Let φ : S → T ⊆ RM be the feature mapping from the state space



into an M -dimensional feature space T . Let φt = φ(st) denote the state feature
vector observed at time t. We denote the sequence of observed feature vectors
after t timesteps by φ1:t ∈ T t, and denote the set of all finite sequences of feature
vectors by T ∗. Let φ1:tφ denote the sequence where φ1:t is followed by φ. The
i-th element of φ is denoted by φi, and the i-th element of φt is φt,i.

Definition 1 (Feature Visit-Density). Let ρ : T ∗ × T → [0, 1] be a density
model that maps a finite sequence of feature vectors φ1:t ∈ T ∗ to a probability
distribution over T . The feature visit-density ρt(φ) =

∏M
i=1 ρ

i
t(φi) at time t is

the distribution over T that is returned by ρ after observing φ1:t, where each of
the ρit are independent factor distributions over individual features φi ∈ U ⊆ R.

If U is countable we can use a count-based estimator for the factor models
ρit(φi), such as the empirical estimator ρit(φi) = Nt(φi)

t , where Nt(φi) is the
number of times φi has occurred. In our implementation we use binary-valued

features and the Krichevsky-Trofimov (KT) estimator ρit(φi) =
Nt(φi)+

1
2

t+1 .
This density model induces a similarity measure on the feature space. Loosely

speaking, feature vectors that share component features are deemed similar. This
enables us to use ρt(φ) as a novelty measure for states, by comparing the features
of newly observed states to those in the history. If φ(s) has more novel component
features, ρt(φ) will be lower. By modelling the features as independent, and using
count-based estimators as factor models, our method learns reasonable novelty
estimates from very little data.

3.2 Reinforcement Learning with the φ-pseudocount

Here we adopt a recently proposed method for computing generalised visit-counts
from density models [2, 10]. We derive the φ-pseudocount from our feature visit-
density.

Definition 2 (φ-pseudocount). Let ρt(φ) be the feature visit-density after ob-
serving φ1:t. Let ρ′t(φ) denote the same density model after φ1:tφ has been ob-

served. The φ-pseudocount N̂φ
t (s) for s ∈ S at time t is N̂φ

t (s) =
ρt(φ(s))(1−ρ′t(φ(s)))
ρ′t(φ(s))−ρt(φ(s)) .

Following traditional count-based exploration algorithms, we drive optimistic
exploration by computing a bonus from the φ-pseudocount.

Definition 3 (φ-Exploration Bonus). Let β ∈ R be a hyperparameter. The

φ-exploration bonus for a state-action pair (s, a) ∈ S ×A is Rφt (s, a) = β√
N̂φt (s)

.

This bonus is added to the reward rt. The agent is trained on the augmented
reward r+t = rt+R

φ
t (s, a) using any value-based RL algorithm with LFA. At each

timestep our algorithm performs updates for at most M estimators, one for each
feature. The cost of our method is therefore independent of the size of the state-
action space, and scales only in the number of features. If the feature vectors
are sparse, we can maintain a single prototype estimator for all the features that
have not yet been observed. Under these conditions our method scales only in
the number of observed features.



Algorithm 1 Reinforcement Learning with LFA and φ-EB.

Require: β, tend
while t < tend do

Observe φ(s), rt
Compute ρt(φ) =

∏M
i ρit(φi)

for i in {1,. . . ,M} do
Update ρit+1 with observed φi

end for
Compute ρt+1(φ) =

∏M
i ρit+1(φi)

Compute N̂φ
t (s) =

ρt(φ)(1−ρt+1(φ))

ρt+1(φ)−ρt(φ)

Compute Rφ
t (s, a) = β√

N̂
φ
t (s)

Set r+t = rt + Rφ
t (s, a)

Pass φ(s), r+t to RL algorithm to update θt
end while
return θtend

4 Empirical Evaluation

Here we summarise the results of the evaluation of our algorithm on five hard
exploration games from the Arcade Learning Environment (ALE) [1]. (Theoret-
ical results are presented in [6].) Three of the chosen games have sparse rewards
(Montezuma’s Revenge, Venture, Freeway) and two have dense rewards (Frost-
bite, Q*bert). We conducted five independent learning trials for Montezuma and
Venture, and two trials for the remaining three games. All agents were trained
for 100 million frames on the no-op metric using the stochastic version of the
ALE [1]. Trained agents were then evaluated for 500 episodes. We implement
Algorithm 1 using Sarsa(λ) with replacing traces and LFA as our RL method.

Vent. Mont. Free. Frost. Qbert

φ-EB (100)[6] 1169.2 2745.4 0.0 2770.1 4111.8

Sarsa-ε (100) 0.0 399.5 29.9 1394.3 3895.3

PC (100)[2] N/A 3459 N/A N/A N/A

A3C+ [2] 0 142 27 507 15805

Hash [15] 445 75 34 5214 N/A

MPEB (20)[12] N/A 0 12 380 N/A

DDQN [4] 98 0 33 1683 15088

DQNPA [3] 1172 0 33 3469 5237

Gorila [9] 1245 4 12 605 10816

TRPO [11] 121 0 16 2869 7733

Dueling [16] 497 0 0 4672 19220

Table 1: Evaluation scores after 200M frames,
unless indicated in parentheses.

To implement LFA in the ALE we
use the Blob-PROST feature set
presented in [5] and the same pa-
rameter values for Sarsa(λ) algo-
rithm. We also evaluate a base-
line implementation of ε-greedy
Sarsa(λ) with the same feature set,
denoted Sarsa-ε. The β coefficient
in the φ-exploration bonus was set
to 0.05 for all games, after a coarse
parameter sweep across a range of
ALE games.

Learning curves are reported in
Figure 1. φ-EB with β = 0.05
outperforms Sarsa-ε on all tested
games except Freeway. (Note that
with β = 0.035 it performs well in



Freeway. Figure 1 shows the learning curve for the latter.) Since both algorithms
use the same feature set and RL algorithm, and differ only in their exploration
policies, this is strong evidence that φ-EB produces improvement over random
exploration across a range of environments. Table 1 reports the average eval-
uation scores for leading algorithms. On Venture, φ-EB’s score is the second
highest reported to date, and the third highest on Montezuma’s Revenge. Note
that no other algorithm achieves good scores on both these sparse reward games.
On the dense reward games (Frostbite and Qbert), nonlinear methods perform
better.

Fig. 1: Average training scores for φ-EB and the baseline Sarsa-ε. Dashed lines are
min/max scores. Shaded regions describe one standard deviation.

5 Conclusion

We have introduced the φ-Exploration Bonus method, a count-based optimistic
exploration strategy that scales to high-dimensional environments. It is simpler
to implement and less computationally demanding than comparable proposals,
since it does not require an exploration-specific state representation, but rather
exploits the features used in the approximate value function. Our evaluation
shows that it improves upon ε-greedy exploration on a variety of games, and
that it is competitive with leading exploration techniques developed for deep RL.
This supports our conjecture that using the same task-relevant features for value
function approximation and novelty estimation is an efficient and principled way
to generalise visit-counts to the high-dimensional setting. We conclude by noting
that this reliance on the feature representation used for LFA is also a limitation.
It is not obvious how a method like ours could be combined with the nonlinear
function approximation techniques that have driven recent progress in RL. We
hope the success of our simple method will inspire future work in this direction.



References

1. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research 47, 253–279 (2013)

2. Bellemare, M.G., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., Munos, R.:
Unifying count-based exploration and intrinsic motivation. CoRR abs/1606.01868
(2016), http://arxiv.org/abs/1606.01868

3. van Hasselt, H., Guez, A., Hessel, M., Silver, D.: Learning values across many orders
of magnitude. CoRR abs/1602.07714 (2016), http://arxiv.org/abs/1602.07714

4. van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
Q-learning. In: AAAI (2016)

5. Liang, Y., Machado, M.C., Talvitie, E., Bowling, M.: State of the art control of
Atari games using shallow reinforcement learning. In: Autonomous Agents and
Multi-Agent Systems (2016)

6. Martin, J., Narayanan S., S., Everitt, T., Hutter, M.: Count-Based Explo-
ration in Feature Space for Reinforcement Learning. In: Proceedings of the 26th
International Joint Conference on Artificial Intelligence. AAAI Press (2017),
http://arxiv.org/abs/1706.08090

7. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver,
D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In:
International Conference on Machine Learning (2016)

8. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.a., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis,
D.: Human-level control through deep reinforcement learning. Nature 518(7540),
529–533 (2015)

9. Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon, R., Maria, A.D., Pan-
neershelvam, V., Suleyman, M., Beattie, C., Petersen, S., Legg, S., Mnih, V.,
Kavukcuoglu, K., Silver, D.: Massively parallel methods for deep reinforcement
learning. CoRR abs/1507.04296 (2015), http://arxiv.org/abs/1507.04296

10. Ostrovski, G., Bellemare, M.G., van den Oord, A., Munos, R.: Count-
based exploration with neural density models. CoRR abs/1703.01310 (2017),
http://arxiv.org/abs/1703.01310

11. Schulman, J., Levine, S., Moritz, P., Jordan, M.I., Abbeel, P.: Trust region policy
optimization. CoRR abs/1502.05477 (2015), http://arxiv.org/abs/1502.05477

12. Stadie, B.C., Levine, S., Abbeel, P.: Incentivizing exploration in reinforce-
ment learning with deep predictive models. CoRR abs/1507.00814 (2015),
http://arxiv.org/abs/1507.00814

13. Strehl, A.L., Littman, M.L.: An analysis of model-based interval estimation for
Markov decision processes. Journal of Computer and System Sciences 74(8), 1309–
1331 (2008)

14. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction, vol. 1. MIT press
Cambridge (1998)

15. Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, X., Duan, Y., Schul-
man, J., Turck, F.D., Abbeel, P.: #Exploration: A study of count-based
exploration for deep reinforcement learning. CoRR abs/1611.04717 (2016),
http://arxiv.org/abs/1611.04717

16. Wang, Z., de Freitas, N., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M.:
Dueling network architectures for deep reinforcement learning. In: International
Conference on Machine Learning (2016)


